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A comment on Rivier’s maximum entropy method of 
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Received 1 lune 1994, in hal Form 12 October 1994 

Abstract. In the literature, Rivier‘s maximum entropy method was used to ‘prove’ Lewis‘s 
law and a linear Aboav’s law. In this paper we show lhat the functional forms of these two 
laws for a statistically equilibrated cellular network. even if such a network really exists, cannot 
be derived or proved by this methad. For example, within the maximum entropy method, we 
demonstrate that a quadratic Aboav’s or Lewis’s law is as probable as a linear one. 

1. Introduction 

Space-filling cellular stIllctures can be observed in many natural phenomena, such as in 
biological tissues and in metallurgical aggregates. In the physical literature for these cellular 
networks it is usually assumed (implicitly or explicitly) that they consist of convex cells 
only and have trivalent vertices only. That means, all vertices have the same coordination 
number 3, since any vertex with higher coordination is structurally unstable and will split 
into several trivalent vertices by some small deformations (see the discussions in Delannay 
et a1 (1992), Le Caer (1991). Le Cafr and Delannay (1993b). and Rivier (1985, 1993)). 
Such a network, or a random tessellation, is called ordinary equilibrium srate. Reviews of 
this subject can be found in Biarez and Gourvbs (1989). Bideau and Dodds (1991), Bideau 
and Hansen (1993). Chiu (1994b), Dormer (1980), Getis and Boots (1978), Gibson and 
Ashby (1988), Gorden (1978), Guinier (1980), Okabe et al (1992), Smoljaninov (1980), 
Stoyan etal (1987) Stoyan and Stoyan (1992). Thompson (1917) and Weaire and Rivier 
(1984). 

Rivier (1985,1986,1990, 1991,1993,1994) and Rivier and Lissowski (1982) developed 
the maximum entropy method to ‘derive’ the srructural equations of state (e.g. Aboav’s 
and Lewis’s laws stated below) for a cellular network which is in statistical equilibrium. 
It has been believed that the notion of entropy defines a kind of measure of randomness; 
probability distribution of higher entropy are ‘more disordered’, ‘more random’ and ‘more 
probable’ and they ‘assume less’ and are ‘more natural’ according to the interpretation 
in Shannon’s (1948) information theory context. The general principle of the maximum 
entropy method is that when we make inferences based on incomplete information, we 
should draw them from that probability distribution which maximizes the entropy under the 
information, or constraints, we have. 

Rivier’s maximum entropy theory of statistical crystallography is based on two 
observations: (i) random cellular structures are usually indistinguishable, apart from the 
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scale of measurement, and (ii) an 'ideal' random cellular structure is determined solely by 
some inescapable mathematical constraints and is in statistical equilibrium; this structure 
is 'the most probable' and 'arbitrariness invariant'. These two propositions led to the use 
of the maximum entropy method. This maximum entropy method was used to 'prove' 
Lewis's law by Rivier and Lissowski (1982) and Aboav's law (in some sense) by Peshkin 
ef a[ (1991) (referred to as PSR hereinafter). Roughly speaking, Aboav's and Lewis's laws 
state that the mean number of edges of the neighbours and the mean area of a typical 
n-edged cell arc linear functions of n; the term 'typical cell' means a randomly chosen cell 
in the network, where all cells are equally weighted, and for simplicity, a typical n-edged 
cell is called a 'typical n-cell'. 

In this paper, we are going to see that this maximum entropy method cannot be used 
to derive the functional forms of the structural equations of state. There are infinitely many 
possibilities of the functional forms which maximize the entropy S to the same value, where 
S is defined in Rivier (1993) by 

where pn is the probability that the typical cell of that cellular network has n edges, and q. 
is a prior probability, or a prior of p n .  Therefore, the equivalence between the statistical 
equilibrium and the maximum value of this entropy is in doubt. 

2. A review of Lewis's law and the maximum entropy method 

Lewis (1928, 1930, 1931, 1943, 1944) observed in several planar cellular networks, at 
various stages of their development, a specific relationship between the average area of a 
typical n-cell, A, say, and n: 

(2) 
where A is the mean number of cell-centroids per unit area. 

Rivier (1991, 1993) and Rivier and Lissowski (1982) showed that ifthere exists a linear 
relationship between A.  and n, for n > 2, then Lewis's law can be obtained as follows. Let 
A .  = (10 + atn be true, where and a!  are some constants. As the mean area of a typical 
cell is always the reciprocal of the intensity of cells 

1 
A - - ( n - 2 )  - 4A 

and the mean number of edges is 6, provided that all vertices are trivalent: 

C ~ P .  = 6 (4) 
n 

these two equations lead to a0 + 6al = I/A. By writing a1 = PIA, where ,3 is some 
constant, we obtain 

A " - A  -F (n - (6 - ; ) ) .  

Since a convex cell must have at least 3 edges, it is A2 = 0, which yields p = lj4. Hence 
Lewis's law (2) is obtained. 

Then the maximum eneopy method was used to show that the linear relationship 
between A, and n maximizes the entropy S under constraints (3), (4) and 

CP" = 1. 
" 
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The argument used in Rivier’s maximum entropy method is that if a constraint is made 
redundant, the entropy can be increasedfurther. Thus, if (3) is a linear combination of (4) 
and (6). then S is maximized subject to these two inescapable constraints only. This implies 
A, = Q + aln with Q + 6a1 = l / h  is ‘more probable’. 

Note that since {q.), the prior probability distribution, is not known, we cannot derive 
explicitly the { p n ]  such that the entropy S is maximized. Rivier and Lissowski (1982) 
originally assumed that typical cells of n edges are equally probable for all n > 3. 
Under this assumption, maximizing S is equivalent to maximizing the Shannon entropy 
H -~ ,p . Inp . .  

Let {pyE) denote the distribution such that the entropy S with an arbitrary but fixed 
prior [qn)  is maximized under constraints (4) and (6) only, and the corresponding maximum 
eneopy value under these two constraints is SME. Using the Shannon entropy H as in Rivier 
and Lissowski (1982), one can obtain that pyE = (1/4)(3/4)”-3 and Sm = 4 In4 - 3 In 3. 
If A, = a0 +aln with a0 + 6aj = l /h ,  then the Shannon entropy can really be maximized 
to 41114 - 31113. However, it is easy to obtain the same maximum entropy with, e.g., 
A. = ao+aln+azn2 where ao+6al+48a2 = 111. Therefore, with respect to the Shannon 
entropy a quadratic Lewis’s law is as probable as a linear one. 

3. A review of Aboav’s law 

Aboav (1970) observed empirically that in cellular networks of trivalent vertices the total 
number of edges of cells neighbouring the typical n-cell of a planar cellular network is 
linear in n. This leads to the formula 

nm. = Q + aIn 

where m, is the mean number of edges of a randomly chosen neighbour of the typical 
n-cell, and a0 and a, are constant such that a0 + 6al = 36+ p2 with p~ = E,(. - 6)’p.. 
The relation of the constants is due to the so-called Weaire’s (1974) sum rule. However, 
such a linear Aboav’s law is not universally true, as can be seen from the following exact 
identity. A rigorous proof can be found in Chiu (1994~). 

Theorem. For pn z 0 

6 cov(k(n, N ) ,  N) 
m . = 5 + - +  

n np. 
(7) 

where N is the random number of the edges of the typical cell, with probability distribution 
{pa], and k(n, I )  is the mean number of n-edged cells which belong to the complex of the 
typical 1-cell, when PI > 0, and zero otherwise. The complex of the typical cell is the union 
of the typical cell and all its neighbouring cells. 

Proox This k(n,  I )  is connected to Mn(I), the mean number of n-edged cells of the typical 
I-cell by the following simple relation: 

W , l )  = M . ( O + h  (8) 

where S,I equals to 1 when n = I and zero otherwise. 
Counting the total number of edges of all n-edged cells from the number of their 

adjacent cells (Cl{Mn(l) x Wedged cells)]) and from the number of their own edges 
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(n x #n-edged cells), and then dividing the total number of cells yields 

where pn  is assumed loosely to be the relative frequency of n-edged cells. Moreover, the 
total number of edges between n-edged and 1-edged cells (M,(I) x %edged cells) is the 
same as that between I-edged and n-edged cells (Mt(n)  x h e d g e d  cells). Dividing this 
number by the total number of cells yields 

plMn(l) = p&(n). (10) 

Note that by the same argument or simply by substituting (8) into (9) and (10). similar 
identities are obtained for k(n, 1 )  

A few steps of calculation lead to 

PI nm, = z l k ( n ,  1)- - n 
I Pn 

I ) P I  = 6(n + 1)p. + cov(k(n, N ) .  N ) .  
I 

These two equations yield (8). 0 

4. A maximum entropy prediction of Aboav's law 

PSR used the maximum entropy method to show that in order to maximize the entropy S, 
M I @ )  should be in the following linear form: 

(13) M h )  = AI C Btn 
for some AI and BI depending on I only. This leads to a linear Aboav's law: 

There are several constraints imposed on {p,J, namely, (4), (6). (9) and (IO) stated in the 
previous sections. If Mi@) is written in the linear form (13), then (9) can be re-expressed 
as a combination of (4) and (6), and so the entropy S can be increased further. 

Moreover, (9) is a consequence of (10). which is made redundant by the linear form 
(13); this has not been established in their paper. 

To show this redundancy of (10). note that substituting (13) and (8) into the exact 
identity (7) yields 

B" nm, = 6n + -pz 
PO 

as COV(&~,  N) = (n - 6)p,. Compare (15) with (14) we obtain 
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for reasons which will become clear, the running index is changed from I to j .  
By (4), (6)  and (9), (13)  becomes 

Aj + 6 8 ,  = j p j .  
Multiplying both sides of (17) by j and then summing up all possible j yields 

Substituting (18) into (16). yields 

B. 
-p.? = p z + ( n  -6)  
P” 

Therefore, from (13), (17) and (19), 

Thus (10) is fulfilled. 

5. Other entropic predictions of Aboav’s law 

Let us reconsider PSR’S argument again. If constraints (11) and (12) instead of (9) and (10) 
were used in their argument, they would conclude that k(n,  1 )  is linear in n,  too. That is 

(20) k(1, n )  = AI + bin 
where AI and 8; are some constants depending only on 1. Although a linear Aboav’s law 
still results, it is impossible to have both Ml(n)  and k(I ,  n)  being h e a r  in n, since they are 
different by 1 at the point 1 = n and are the same otherwise. However, the entropy S in 
this case is still SME, since with the linear form (20), it can be easily shown that 

and so (12), as well as (9). (10) and (11). is also redundant. Therefore, no matter if it is 
Ml(n)  or k(1. n)  (but not both) that is linear in n, the entropy is still Sm, and so it is not 
clear which functional form is ‘more probable’. 

It is also possible to establish another entropic prediction of the form of Ml(n) with the 
same entropy value Sm, by making (9) to be a linear combination of (4) and (6). Define 

f ( I ,  n)  = Ml(n) - 6,11 = k(1, n) - &1(1 + 1 ) .  
Then both constraints (9) and (11) can be rewritten as 

N. n)p ,  = 0. (21) 
n 

Using the argument of this maximum entropy method, the entropy S can be increased further 
when f ( 1 ,  n)  is in the form 

(22) 
for some constants a1 and b1 depending on I only, provided that at + 661 = 0. This implies 
.Ml(n), k(I, n )  and nm, are nonlinear: 

f ( l ,  n)  = a1 + bln 
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To prove the entropy is still SME, it suffices to show that under (4), (6) and (22), (10) 
is redundant, and consequently so are (9), (11) and (12). A proof can be constructed easily 
and is given in Chiu (19!34a), where further examples of different forms of nm. are also 
given. 

Actually, whenever El Ml(n) = n and Mr(n)/p,  is a function which is symmetric 
in n and I ,  (10) holds, and so does (9). Thus, no matter whether Ml(n)/pl is (n1)/6, 
1 + (n  - 1)(1 - 1) /5  2 + (n - 2)(1 - 2)/4,. . ., or n&l/p,, 1 + (n - 1)&Jpn,.  . .etc. 
constraints (9) and (10) are redundant. Hence, the entropy can still be maximized to SME; 
that is to say, all these forms are ‘equally probable’. That means, Ml(n) is not uniquely 
determined by this maximum entropy method, nor is k(1, n). 

These examples show that it is not yet clear that the functional form(s) of which 
characteristic(s), Ml(n), k(l ,  n), f (Z, n) ,  Ml(n)/p,  or some others, can be chosen arbitrarily. 
Even if we can set up some criteria such that only the functional form of Ml(n) ,  say, can be 
chosen arbitrarily, it is not necessary to be linear. Even if it had to be linear, the slope and 
the intercept would not be fixed. Thus, the structure can undergo changes without changing 
the value of the entropy, and so the structure is not in statistical equilibrium. 

6. A general maximum entropy method 

Rivier’s maximum entropy method can be written in the following generalized form. 
Consider a characteristic of a typical n-cell, h(n) say, and suppose that there are only 
three constraints imposed on (pn},  namely, (4). (6) and 

where K is some constant. The maximum entropy method of Rivier states that if the 
functional form of h can be chosen arbibarily (it should be emphasized once more that so 
far there has been no criterion established for the arbitrariness of the functional form of 
some characteristic, but here we just suppose the functional form of h, no matter what it is, 
can be chosen arbitrarily), then when 

h(n) = a0 + aln (25) 

constraint (24) is a linear combination of (4) and (6) and so is made redundant. 
Consequently, the entropy S can be increased further, and the structure with (25) is ‘more 
probable’. If there are more than three constraints. the argument is essentially the same, 
i.e. choosing a functional form of h arbitrarily such that it is consistent with all constraints 
and at the same time makes some constraint(s) redundant. Then this functional form of h 
is ’more probable’. 

A linear Lewis’s law can be ‘derived’ by letting h(n) = A, and K = l/h. In the 
present paper, a quadratic Aboav’s law (23) is obtained by using h(n) = MI@) +&In and 
K = 0; there is another constraint, but it is shown to be redundant if the linearity of h 
holds. However, this quadratic Aboav’s law is shown to be of the same entropy value SME 
as that of the linear law derived in PSR. Which functional form of Aboav’s law is ‘more 
probable’ is still not clear. The same problem arises in Lewis’s law. 

The reason of the existence of more than one equally probable functional form of h is 
that (25) is only a suficient but not necessary condition for the entropy S to be maximized. 
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7. Infinitely many possibilities of the functional form of h(n) 

Assume that there are only three constraints (4). (6) and (24) imposed on [p , , ) .  We do this 
since no matter how many constraints there are, the argument is essentially the same. The 
aim of Rivier’s maximum entropy method is to make (24) redundant by using (25) with 
a0 + 6al = K. However, suppose that we first maximize the entropy subjected to (4) and 
(6). The solution is p,“€ with the entropy SME. Then we have a great degree of freedom 
to choose the functional form of h(n) such that (24) holds in order to maintain the entropy 
at the same value. 

More generally, consider an arbitrary sequence of real-valued functions {gi) which are 
defined on all integers. Let 

provided that Gi’s exist and are bounded. Let 

C a i G i  = K. 
i 

Constraint (24) is stiU satisfied by {pFE}  and so is redundant. This implies that the entropy is 
still SME. However, the sequence {gi) in (27) cannot be ‘derived’ by the maximum entropy 
method. All g,’s can still be chosen arbitratily without reducing the entropy, provided 
that the corresponding ai’s in (27) satisfy (28). Thus, there are infinitely many possible 
functional forms of h such that the entropy is always maximized to be SME. 

Note that (26) and (28) are not imposing new constraints on { p , ) ,  but on {ai). i.e. when 
a functional form is given, the condition (28) imposes a constraint on the coefficients of the 
functional form in order to maximize the entropy. 

Therefore, the muximum entropy is always SME, no matter how (24) is made redundant. 
(A redundant constraint is a constraint that {pFE) and SME are the same with or without 
this constraint. Another possible definition is that the solution space is the same with or 
without this constraint. Obviously, the former definition is more suitable than the latter in 
this context. Otherwise, we have to say ‘to make a constraint do not discard the solution 
which is obtained by ignoring this constraint’.) 

8. Conclusion and Discussion 

It is shown by examples that Rivier’s maximum entropy method does not lead to a unique 
specific functional form of a structural equation of state of a statistically equilibrated cellular 
network, even if such a network really exists. The equivalence between the statistical 
equilibrium and maximum value of the entropy S is not yet established. Suppose S is 
maximized by some functional form of a structural equation, the statistical structure of the 
network can still undergo some changes without reducing the entropy. Therefore, it is more 
likely that they are not equivalent, otherwise the statistical equilibrium may not exist. 

The fallacy of this method comes from the confusion between the sufficiency and 
necessity. This method assumed that the statistical equilibrium leads to the maximum 
entropy and then showed that a linear Aboav’s or Lewis’s law implies that the entropy is 
maximized. That is, 

a linear Aboav’s law =+ S is maximized statistical equilibrium. 
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However, when the entropy S is really maximized, it is not clear whether or not a unique 
linear Aboav’s law holds and whether or not the froth is in statistical equilibrium. The 
examples presented above show that the argument in PSR does not lead to the following 
conclusion: 

a unique linear Aboav’s law 

Note that the linearity assumption is stronger than the assumption that the entropy is 
maximized. Thus, the equivalence between the linearity of A,, nm, or M&) and the 
statistical equilibrium is not excluded in the present paper. 

One consequence of the results presented here is that this method also cannot be 
employed to find any hidden constraint, as we show in the following example. 

Gervois etal (1992) and Lemate et al (1992, 1993) found that in the experiments of 
hard discs on an air cushion table 

S is maximized + statistical equilibrium. 

C 
A, = a  f b n  f - 

n 
where a, b and c are some constants. They suggested that there is a hidden constraint on 
this experiment, namely, C , ( l / n ) p .  = Z, for some constant 2. 

However, if a + 6b + &IC = I/.& where f i - 1  = ~ n ( l / n ) p ~ E ,  the entropy is 
still maximized to SME with the functional form (29) but without the extra constraint 

Note that the argument here is valid generally even if there are some other constraints, 
except that the constraints imposed on h and [p,J are strong enough to guarantee that 
h in (24) is unique, and so h can be found by solving the usual maximization problem. 
Then the functional form of h is no longer arbitrary, and it is not possible to increase the 
entropy further by making some constraint or constraints redundant. However, whenever 
it is possible to take an arbitrary form of h.  neither the maximum entropy method can be 
employed to derive a unique structural equation of h ,  nor can it be determined that the 
network is statistically equilibrated. 

C,(l/n)p. = 2. 
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